機械学習のための線形代数本
「『機械学習を理解するためには代数を勉強しろ』と言われたが、代数の教科書を読んでもどこが機械学習に役立つのか全く分からない」という話を聞いてその人が読んでいる本を見せてもらったところ、代数の教科書でも群論とか環論の本でした。
「勉強しろと言った人はたぶん『代数』ではなくて『線形代数』を勉強しろと言ったのでは……?」と思ったのですが、「人によって代数学の入り口が違うのかも?」と気づきました。
現代代数の基礎は「群」、「環」、「体」なので、代数学の入門書は群論から始まります。ただ、たいていの大学では先に線形代数を教えていると思います。ですから「代数を勉強しろ」というのは「当然線形代数から勉強しろ」という意味なのかな……とも思いました。
ともあれ、機械学習には群論や環論といった抽象代数学を勉強する必要はありません(少なくとも今のところは)。
必要なのは線形代数の知識です。
こういった「機械学習向きの線形代数」の勉強におすすめなのが、普通の線形代数の教科書ではなくて
プログラミングのための線形代数
です。
表紙が「古き良きアメリカンSFコミック風」なので「本当にこの本で大丈夫か?」と心配になりますが、中身は表紙と全く関係なくしっかりした本です。
この表紙で損してると思うなー。
線形代数を勉強させられる人は「なぜこんなことを勉強しないといけないのか良く分からない」ということが多いのですが、機械学習をやっている人ならこの本を読めば「『画像を変換する(写像)』『高次元空間の点(データ)を自在に取り扱う』のに線形代数が必須である」ことが分かって勉強しやすいと思います。
普通の「線形代数」の入門書と違って、
・数値計算を行う場合のテクニック
・数値計算でのハマりどころ
が書かれているところもポイントが高い。